white paper

Machine Learning at the Edge: Using HLS to Optimize Power and Performance

Machine Learning at the Edge: Using HLS to Optimize Power and Performance

Moving machine learning to the edge has critical requirements on power and performance. Using off-the-shelf solutions is not practical. CPUs are too slow, GPUs/TPUs are expensive and consume too much power, and even generic machine learning accelerators can be overbuilt and are not optimal for power. In this paper, learn about creating new power/memory efficient hardware architectures to meet next-generation machine learning hardware demands at the edge.

Compartir

Recursos relacionados

Unleash the power of an integrated CAE workflow for efficient design of fast boats
Webinar

Unleash the power of an integrated CAE workflow for efficient design of fast boats

Learn how you can create a propulsion system with systems simulations and deploy it in a computational fluid dynamics (CFD) self-propulsion simulation to assess the maximum speed.

Cómo diseñar un barco utilizando la simulación
Webinar

Cómo diseñar un barco utilizando la simulación

Vea este webinar para descubrir cómo las herramientas digitales pueden cambiar el diseño de un barco. Asegúrese de que se cumplen todos los requisitos y elimine la espiral de diseño de su proceso.