white paper

Working smarter, not harder: NVIDIA closes design complexity gap with HLS

Success Story

Catapult High-Level Synthesis (HLS) Flow

By adopting a C++ High-Level Synthesis (HLS) flow using Catapult® from Siemens EDA, NVIDIA® was able to simplify their code by 5X, reduce the number of CPUs required for regression testing by 1000X, and run 1000X more tests to achieve higher functional coverage of their designs.

High-Level Synthesis (HLS) Decreased Design & Verification Time

HLS decreased design time by 50 percent and overall development time, including verification, by 40 percent, closing the gap between design complexity and the capacity to design. This paper will discuss the challenges NVIDIA faces in the ever-evolving world of video, camera, and display standards and the reasons an HLS/C-level flow makes it possible for them to succeed in this context.

Share

Related resources

Streamlining ship design with simulation and data management
Webinar

Streamlining ship design with simulation and data management

Integrate finite element simulation seamlessly with CAD to make marine structural simulation software an advantage.

Unleash the power of an integrated CAE workflow for efficient design of fast boats
Webinar

Unleash the power of an integrated CAE workflow for efficient design of fast boats

Learn how you can create a propulsion system with systems simulations and deploy it in a computational fluid dynamics (CFD) self-propulsion simulation to assess the maximum speed.

Full scale CFD simulation for marine design: An in-depth review
White Paper

Full scale CFD simulation for marine design: An in-depth review

This white paper examines common reservations for running CFD at full scale and encourages full-scale analysis of marine designs under realistic operating conditions