技术论文

Optimizing curvilinear ILT recipe development with machine learning based pattern selection

Image shows Calibre SONR overview: machine learning based process aware layout analytics.

Inverse Lithography Technology (ILT) is key to moving the semiconductor industry beyond the 3nm design node, driven by design density and process window improvements. The test patterns used for recipe development play a critical role in achieving optimized ILT masks in terms of mask-friendliness, OPC convergence or multi-structure common focus range. The traditional way of test pattern selection is usually a clip-level manual search of design rules, which inevitably lacks critical design representations.

In this paper, we introduce the Calibre SONR software, which uses machine learning (ML) methods to implement design layout clustering and automatic pattern selections for ILT recipe tuning on a full-chip level. It is shown that SONR enables comprehensive coverage of the layout complicity and hence improves the robustness in the real full chip run. In addition, it improves productivity for recipe tuning without suffering any loss in the wafer performance by simulation in terms of EPE convergence, PVBand and common DOF.

分享

相关资源

使用人工智能推动汽车性能工程
Webinar

使用人工智能推动汽车性能工程

汽车中的人工智能有助于改进设计流程、提高准确性并加快产品开发速度。了解更多信息

协同和集成在汽车性能工程中的作用
Solution Brief

协同和集成在汽车性能工程中的作用

在汽车性能工程中结合使用仿真、测试、基于模型的系统工程 (MBSE) 和人工智能 (AI),实现高效而盈利的汽车开发。了解详情

在汽车工程中利用人工智能和机器学习
Video

在汽车工程中利用人工智能和机器学习

实施人工智能和机器学习,以更快、更经济高效地开发车辆,同时保持耐用性。了解更多信息。