백서

블루닷: Catapult-HLS를 이용한 NN기반의 DeepField-PQO 설계 가속화

블루닷의 AI 기반 DeepField-PQO IP

최근 Mobile 트래픽에서 동영상이 차지하는 비율이 기하급수적으로 증가하고 있다. 이러한 비디오 트래픽 증가 추세는 인터넷/동영상 기술의 발달과 동영상 소비패턴의 변화에 기인하고 있다.

비디오 서비스 플랫폼회사들은 더 좋은 화질과, 더 적은 용량으로 인코딩하기 위해 많은 비용을 감수해야 한다. 이러한 문제를 해결하기 위해 블루닷은 AI기반의 CODEC용 전처리 필터인 DeepField-PQO를 개발 하였다. 기존의 개발 방식으로는 AI기반 알고리즘이 점점 더 복잡해지면서, 설계, 검증에 많은 시간이 소요되어 개발 기간을 줄이는데 한계가 있다. 우리는 이를 해결하기 위해 FPGA에 HLS 도입을 하여 개발 하였고, ASIC을 타켓팅하기 위해서 Catapult HLS 도입하였다.

Catapult HLS 도입으로 성능을 개선하기 위한 Spec변경에 유연하게 대처할 수 있었고, 더 쉽게 협업, 검증, 코드 재사용으로 전체 개발 기간을 단축할 수 있었다.

공유

관련 자료

실리콘 카바이드 (SiC) 전력 반도체 열 특성화
Webinar

실리콘 카바이드 (SiC) 전력 반도체 열 특성화

열 과도 측정 테스트 기술인 Simcenter T3STER를 전력 전자 장치 내 SiC 소자에 적용해 열 메트릭을 결정하고 열 시뮬레이션 정확도를 향상시키며 신뢰성 테스트 및 품질 평가를 수행하는 방법에 대한 웨비나.