ホワイトペーパー

BLUEDOT: Accelerating NN-based DeepField-PQO design using Catapult HLS

Picture of BLUEDOT’s AI-based DeepField-PQO IP

Recently, the proportion of video in mobile traffic has been increasing exponentially. This video traffic growth trend is due to the development of Internet/video technology and changes in video consumption patterns.

Video service platform companies must bear a lot of costs to encode with better picture quality and smaller capacity. To solve this problem, BLUEDOT developed DeepField-PQO, an AI-based CODEC preprocessing filter. With the existing development method and as AI-based algorithms become more complex, design and verification take a lot of time, limiting the development period. To solve this, we introduced HLS to FPGA and developed it, and we introduced Catapult HLS to target ASIC.

With the introduction of Catapult HLS, we were able to flexibly respond to spec changes to improve performance, and shorten the overall development period through easier collaboration, verification, and code reuse.

共有

関連情報

Accelerate product development with PLM integrated MBSE software
Webinar

Accelerate product development with PLM integrated MBSE software

Eliminate ½ of your program schedule with Teamcenter integrated MBSE

航空宇宙業界向けモデルベース・システム・エンジニアリング
E-book

航空宇宙業界向けモデルベース・システム・エンジニアリング

トレーサビリティ、信頼性、確実性を向上して、革新的な航空宇宙関連製品を市場投入より効率的で迅速なエンジニアリングプロセスを実現するMBSE

航空宇宙向けMBSEを使用して、複雑化と統合の問題を克服
Solution Brief

航空宇宙向けMBSEを使用して、複雑化と統合の問題を克服

航空宇宙システムの開発を加速させ、敏捷性を高めるとともに、安全性、信頼性の高い製品を予算内でより迅速に提供できます。電子ブックで詳細をご覧ください。