white paper

BLUEDOT: Accelerating NN-based DeepField-PQO design using Catapult HLS

Picture of BLUEDOT’s AI-based DeepField-PQO IP

Recently, the proportion of video in mobile traffic has been increasing exponentially. This video traffic growth trend is due to the development of Internet/video technology and changes in video consumption patterns.

Video service platform companies must bear a lot of costs to encode with better picture quality and smaller capacity. To solve this problem, BLUEDOT developed DeepField-PQO, an AI-based CODEC preprocessing filter. With the existing development method and as AI-based algorithms become more complex, design and verification take a lot of time, limiting the development period. To solve this, we introduced HLS to FPGA and developed it, and we introduced Catapult HLS to target ASIC.

With the introduction of Catapult HLS, we were able to flexibly respond to spec changes to improve performance, and shorten the overall development period through easier collaboration, verification, and code reuse.

Compartir

Recursos relacionados

Ingeniería del futuro: principales tendencias que impulsan el sector de la maquinaria industrial
E-book

Ingeniería del futuro: principales tendencias que impulsan el sector de la maquinaria industrial

Descubre las últimas tendencias que configuran el futuro de la ingeniería industrial y el papel crucial que están desempeñando las pruebas virtuales de validación del diseño.

Las innovaciones tecnológicas impulsan el cambio en los fabricantes de maquinaria
White Paper

Las innovaciones tecnológicas impulsan el cambio en los fabricantes de maquinaria

Obtenga una ventaja competitiva con las máquinas conectadas e inteligentes y el gemelo digital integral de Siemens