resumen de la solución

The role of collaboration and integration in vehicle performance engineering

Tiempo de lectura: 12 minutos
Combining simulation, testing, MBSE, and AI is the key to vehicle performance engineering for next-generation ICE, autonomous and electric vehicles.

The modern demand for electric and traditional vehicles forces automotive manufacturers to rethink their development processes. Keeping up with an increased production schedule while maintaining profitability is a severe challenge and simply cutting costs isn’t enough as companies struggle to make profits. Automotive manufacturers need to improve and streamline their development processes to enhance the performance of vehicles and reduce development times.

This executive brief describes the changes automotive manufacturers need to make to their development process to improve next-generation vehicle performance engineering — Download now to learn more!

Avoid costly issues with vehicle integration

With today's shorter vehicle development times, working in isolation leads to significant redesigns and delays. Design teams can avoid major redesigns by collaborating earlier and regularly throughout a project. But the answer is not to build more costly and inefficient physical prototypes— instead, simulation is the answer to collaboration and integration in vehicle performance engineering. By producing a comprehensive digital twin, engineers can understand precisely how components will perform when integrated with others, saving time and money.

Integrate MBSE to produce a better product, faster and at a lower cost

Along with simulation, model-based system engineering (MBSE) is key to modern vehicle performance engineering. By incorporating modular design, engineers can re-use elements rather than start from scratch with each new vehicle, combining individual design models to form the basis of any new project. This, combined with frontloading simulations, helps teams make many design decisions as early as possible, resulting in a better product that is completed sooner at a lower cost.

Use artificial intelligence to improve vehicle performance engineering

Artificial intelligence (AI) and machine learning (ML) are used extensively in autonomous driving development to determine the perception and control algorithms and validate different scenarios. In electrification programs and traditional powered vehicles, engineers can use a data-driven approach to increase testing efficiency, predict performance without creating complex simulation models, and effortlessly translate full vehicle targets to subsystems.

Download the executive brief to discover why combining simulation, testing, MBSE, and AI is the key to modern vehicle performance engineering and remaining competitive now and in the future.

Compartir

Recursos relacionados

Streamlining ship design with simulation and data management
Webinar

Streamlining ship design with simulation and data management

Integrate finite element simulation seamlessly with CAD to make marine structural simulation software an advantage.

Unleash the power of an integrated CAE workflow for efficient design of fast boats
Webinar

Unleash the power of an integrated CAE workflow for efficient design of fast boats

Learn how you can create a propulsion system with systems simulations and deploy it in a computational fluid dynamics (CFD) self-propulsion simulation to assess the maximum speed.

Simulación CFD a escala completa para el diseño naval, por Milovan Peric
White Paper

Simulación CFD a escala completa para el diseño naval, por Milovan Peric

Este white paper examina las dudas que se tienen a la hora de ejecutar la simulación CFD a escala completa. Asimismo, fomenta la realización de análisis a escala completa de diseños navales bajo condiciones operativas reales