video

How AI is Redefining Semiconductor Design for the Edge

Enabling Intelligence Through Sustainable Computing

Estimated Watching Time: 21 minutes

The exponential growth in compute demands of AI, and the move to Software Defined Products, means that more than ever workloads are defining the semiconductor requirements. The need to hit the restrictive power, performance, area and cost constraints of edge designs, mean that every element of the design needs to be optimized and co-designed with the workloads in mind. Additionally, the design needs to evolve even after semiconductor design is complete as it adapts to new demands.

In this presentation, we will look at how semiconductor design is changing to enable rapid development and deployment of custom, application-optimized, system-on-chip designs – from concept through to in-life operation, as we chart the path to a sustainable compute future.

(AI HW Summit Keynote Delivered September 10th 2024, San Jose, CA)

Share

Related resources

SLEC System Factsheet
Fact Sheet

SLEC System Factsheet

SLEC System is a good fit for design teams verifying their RTL implementation by formally comparing it against functional SystemC/C++ models

Catapult High-Level Synthesis and Verification Fact Sheet
Fact Sheet

Catapult High-Level Synthesis and Verification Fact Sheet

Industry leading C++/SystemC High-Level Synthesis with Low-Power estimation/optimization. Design checking, code and functional coverage verification plus formal make HLS more than mere “C to RTL.

DVCon 2025:  A must for hardware design and verification engineers
Blog Post

DVCon 2025: A must for hardware design and verification engineers

I've attended every DVCon US conference since its inception, over 30 years ago. I've also given keynotes at DVCon India.…