technický dokument

Machine Learning application for early power analysis accuracy improvement

A case study for cells switching power

Doba čtení: 20 min
Electronic circuit board

In this paper, we introduce a machine learning (ML) application that accurately estimates the switching power of the cells without needing the SPEF file (SPEF less PA flow). Three ML models (multi-linear regression, random forest and decision tree) were trained and tested on different industrial designs at 7nm technology. They are trained using different cells’ properties available, SPEF, and SPEF-less power numbers to accurately predict the switching power and eliminate the need for the SPEF file.

With this new ML approach, we were able to reduce the SPEF-less flow’s average cell switching power error from 34 percent to 8 percent.

Sdílení

Související zdroje informací

From chaos to collaboration: synchronizing ECAD and MCAD design domains
Webinar

From chaos to collaboration: synchronizing ECAD and MCAD design domains

Learn how to improve collaboration between ECAD and MCAD teams to reduce errors, minimize rework and accelerate development of complex electronic products.

Průvodce digitální výrobou od vedoucích pracovníků v obráběcích dílnách
E-book

Průvodce digitální výrobou od vedoucích pracovníků v obráběcích dílnách

Zjistěte, jak vedoucí pracovníci transformují své podniky pomocí digitální výroby, dosahují vyšší rychlosti uvádění výrobků na trh, snižují rizika, zvyšují marže a budují si lepší pozici na trhu.

Speed up innovation in the Beauty and Cosmetics industry
E-book

Speed up innovation in the Beauty and Cosmetics industry

Siemens Digital Industries Software’s product lifecycle management (PLM) solutions include digital product development, digital manufacturing and product data management.